Geochemistry of hydrothermal alteration at the Deri massive sulphide deposit, Sirohi District, Rajasthan, NW India

Saved in:
Online Access: Get full text
doi: 10.1016/S0375-6742(97)00003-4
Authors:Tiwary, Anju; Deb, M.
Author Affiliations:Primary:
Delhi University, Department of Geology, Delhi, India
Volume Title:Journal of Geochemical Exploration
Source:Journal of Geochemical Exploration, 59(2), p.99-121. Publisher: Elsevier, Amsterdam-New York, International. ISSN: 0375-6742
Publication Date:1997
Note:In English. 54 refs.; illus., incl. 4 tables, geol. sketch map
Summary:The 1.1 Ga volcanogenic massive sulphide deposit at Deri in the Sirohi district of south Rajasthan occurs within a bimodal volcanic suite of tholeiites and rhyolites, with minor amounts of andesites and tourmaline-bearing chert, interlayered with arkosic sediments. The ores and the enclosing rocks have undergone superposed deformation and polymetamorphism initially under amphibolite facies conditions and later under hornblende hornfels facies conditions. Metamorphism, however, has not affected the bulk composition of the rocks to any significant degree. Three distinct semiconformable alteration facies, characterized by their conspicuous magnesian mineralogy, are recognized in the host rocks: (1) hornblende-biotite-plagioclase-quartz schist (AMV); (2) cordierite-anthophyllite-chlorite hornfels (AFV); and (3) biotite-chlorite(-sericite) schist/hornfels (BCS). The first is derived from the mafic volcanics, whereas the other two represent progressive alteration of felsic volcanic protoliths. Fe, Mg and water were added and Na was removed from all the alteration facies in varying amounts. The maximum enrichment is noted in BCS for Mg and Fe, whereas the maximum depletion is seen in this facies for Si, an element which is also depleted significantly in AFV. AMV on the other hand, shows enrichment of Si, Ca and to some extent, in Al. Alumina is also enriched considerably in BCS, probably due to clayey alteration and extreme leaching of silica. Amongst the trace elements, Rb, Ba, Nb and Y are gained in most of the facies, except in BCS, where Ba and Y show distinct depletion. The LREE, from La to Sm, were enriched about 1.5- to 3.0-fold in all the facies with a maximum in AFV where the flux took place at constant inter-REE proportions: 1.0 La, 0.79 Ce, 0.48 Nd and 0.35 Sm. Eu was depleted from both felsic facies, 7-fold in BCS to 4-fold in AFV, during alteration. The HREE (Er to Lu) remained immobile in all the altered facies. The chemical and mineralogical zonation in the alteration facies are interpreted to be due to the progressive reaction of an evolving sea-water hydrothermal fluid with the bimodal volcanic protoliths during convective circulation. Fluid-rock interaction, guided by vertical and lateral thermal gradients, produced a sericite-quartz assemblage in the felsic volcanics at the expense of feldspar during the initial stages (175°C) which formed a sericite-chlorite zone upon rising temperature (200-250°C) by base-fixing reactions. A further temperature increase (to ∼300°C) and deeper circulation in the mafic pile introduced more Fe and Mg, thereby transforming the previously formed assemblage to a nearly pure chloritic zone and the most intensely altered biotite-chlorite(-sericite) facies. Abstract Copyright (1997) Elsevier, B.V.
Subjects:Amphibole group; Basalts; Biotite; Chain silicates; Clinoamphibole; Copper ores; Feldspar group; Framework silicates; Hornblende; Hydrothermal alteration; Igneous rocks; Lead-zinc deposits; Massive deposits; Massive sulfide deposits; Metal ores; Metasomatism; Mica group; Mineral deposits, genesis; Mineralization; Plagioclase; Rhyolites; Sheet silicates; Silicates; Sulfides; Tholeiite; Volcanic rocks; Asia; India; Indian Peninsula; Rajasthan India; Sirohi India; Deri Deposit; Hydrothermal processes
Coordinates:N255300 N255300 E0725800 E0725800
Abstract Numbers:98M/1597
Record ID:1997057140
Copyright Information:GeoRef, Copyright 2019 American Geosciences Institute. Reference includes data from CAPCAS, Elsevier Scientific Publishers, Amsterdam, Netherlands
Tags: Add Tag
No Tags, Be the first to tag this record!