Clay diagenesis in the sandstone reservoir of the Ellon Field (Alwyn, North Sea)

Saved in:
Authors:Hassouta, Lhoussain; Buatier, Martine D.; Potdevin, Jean-Luc; Liewig, Nicole
Author Affiliations:Primary:
Université de Lille I, Laboratoire de Sédimentologie et Géodynamique, Villeneuve d'Ascq, France
Other:
Centre de Géochimie de la Surface, France
Volume Title:Clays and Clay Minerals
Source:Clays and Clay Minerals, 47(3), p.269-285. Publisher: Clay Minerals Society, Clarkson, NY, United States. ISSN: 0009-8604
Publication Date:1999
Note:In English. 40 refs.; illus., incl. 3 tables, sketch map
Summary:The nature, composition, and relative abundance of clay minerals in the sandstones of the Brent Group reservoir were studied between 3200-3300 m in a well of the Ellon Field (Alwyn area, North Sea). The sandstones have a heterogeneous calcite cement which occurred during early-diagenesis. Clay diagenesis of the cemented and uncemented sandstones was investigated using optical microscopy, scanning electron microscopy (SEM), X-ray diffraction analyses (XRD), and infrared spectroscopy (IR). The influence of cementation on clay neoformation is demonstrated in this study. Detrital illite and authigenic kaolinite are present in both the calcite-cemented and uncemented sandstones suggesting that kaolinite precipitated before calcite cementation. In the uncemented sandstones, blocky dickite replaces vermiform kaolinite with increasing depth. At 3205 m, authigenic illite begins to replace kaolinite and shows progressive morphological changes (fibrous to lath-shape transition). At 3260 m, all sandstones are not cemented by calcite. Illite is the only clay mineral and shows a platelet morphology. In the cemented samples, vermiform kaolinite is preserved at all depths, suggesting that dickite transformation was inhibited by the presence of the calcite cement. This observation suggests that calcite cement would prevent fluid circulation and dissolution-precipitation reactions.
Sections:Clay minerals
Subsections:Petrology; weathering; soils
Subjects:Bajocian; Brent Group; Clastic rocks; Clay mineralogy; Clay minerals; Diagenesis; Dickite; Illite; Jurassic; Kaolinite; Mesozoic; Middle Jurassic; Offshore; Petroleum; Petroleum exploration; Reservoir rocks; Sandstone; Sedimentary rocks; Sheet silicates; Silicates; Atlantic Ocean; North Atlantic; North Sea; Alwyn; Ellon Field
Abstract Numbers:00M/170
Record ID:1999062811
Copyright Information:GeoRef, Copyright 2019 American Geosciences Institute.
Tags: Add Tag
No Tags, Be the first to tag this record!
Be the first to leave a comment!
You must be logged in first